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Abstract: Focusing attention on a target creates a center-surround inhibition such that distractors
located close to the target do not capture attention. Recent research showed that a distractor can break
through this surround inhibition when associated with reward. However, the brain basis for this
reward-based attention is unclear. In this fMRI study, we presented a distractor associated with high
or low reward at different distances from the target. Behaviorally the low-reward distractor did not
capture attention and thus did not cause interference, whereas the high-reward distractor captured
attention only when located near the target. Neural activity in extrastriate cortex mirrored the behav-
ioral pattern. A comparison between the high-reward and the low-reward distractors presented near
the target (i.e., reward-based attention) and a comparison between the high-reward distractors located
near and far from the target (i.e., spatial attention) revealed a common frontoparietal network, includ-
ing inferior frontal gyrus and inferior parietal sulcus as well as the visual cortex. Reward-based atten-
tion specifically activated the anterior insula (AI). Dynamic causal modelling showed that
reward modulated the connectivity from AI to the frontoparietal network but not the connectivity
from the frontoparietal network to the visual cortex. Across participants, the reward-based attentional
effect could be predicted both by the activity in AI and by the changes of spontaneous functional
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connectivity between AI and ventral striatum before and after reward association. These results sug-
gest that AI encodes reward-based salience and projects it to the stimulus-driven attentional network,
which enables the reward-associated distractor to break through the surround inhibition in the visual
cortex. Hum Brain Mapp 36:5233–5251, 2015. VC 2015 Wiley Periodicals, Inc.

Key words: reward; stimulus-driven attention; reward-based attention; anterior insula; fMRI; resting-
state fMRI; dynamic causal modeling
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INTRODUCTION

It is commonly assumed that selective attention can be
controlled in two different ways: a top-down way when it
is guided by inner goals or expectations and a bottom-up
way when salient stimuli determine selection [Corbetta
and Shulman, 2002]. It is thought that two partially segre-
gated neural networks are involved in these two modes of
selection: a dorsal network, which consists of frontal eye
field and intraparietal sulcus (IPS), controls goal-directed
attention and a ventral network, which consists of inferior
frontal cortex and right temporoparietal junction (TPJ),
controls stimulus-driven attention [Corbetta and Shulman,
2002; Corbetta et al., 2000; Downar et al., 2000].

A specific form of stimulus-driven attention is atten-
tional capture, where a task-irrelevant distractor involun-
tarily attracts attention and interferes with target
processing [Yantis and Jonides, 1984]. A distractor can
capture attention when it bears high perceptual salience
[Theeuwes, 1991, 1992] or shares features with the target
[Folk et al, 1992]. Recently, it is shown that a physically
nonsalient stimulus can also capture attention after it has
been associated with reward, demonstrating reward-based
attentional capture [Anderson et al., 2011; Hickey et al,
2010; Wang et al., 2013]. Moreover, this attentional capture
induced by reward-associated stimulus is persistent even
when the stimulus no longer predicts any actual reward,
i.e., in a no-reward context [Anderson and Yantis, 2013].
Although behaviorally, reward-associated stimulus in the
no-reward context captures attention in a similar way as
the stimulus-driven attention, it is unclear whether they
rely on the same neural substrates. One possibility is that
reward-based attention is controlled by reward-related
brain structures even when actual reward is no longer
paired with the stimulus [Anderson et al., 2014]. The
reward-related brain structures, such as the ventral stria-
tum (VS) and the ventromedial prefrontal cortex [Haber
and Knutson, 2010], do not belong to either the goal-
directed or the stimulus-driven attention system. Alterna-
tively, reward may increase the salience of the stimulus
[Berridge and Robinson, 1998; Hickey et al., 2010], which
activates the stimulus-driven attention system when the
stimulus is encountered. In this fMRI study, we aimed to
address this issue by investigating at the neural level how
reward-associated distractor breaks through a region of
inhibition that typically surrounds the target when atten-

tion is focused on the target [Cutzu and Tsotsos, 2003;
Mounts, 2000a].

When focal attention is directed to a target, an inhibitory
region around the target is built up, preventing the dis-
traction from the surround. In a recent study, we demon-
strated that a distractor associated with reward can break
through this surround inhibition [Wang et al., 2014]. Spe-
cifically, we adopted a reward-learning paradigm in which
high or low reward was associated with a specific target
color during a learning phase. In a subsequent test phase,
the reward-associated color was presented as one of the
task-irrelevant distractors [cf. Anderson et al., 2011]. More
importantly, in the test phase, the high- or low-reward dis-
tractor was located at different distances from the target
[0.9/2.1/3.3/4.58 in visual angle, Experiment 1 in Wang
et al., 2014]. The low-reward distractor interfered with the
discrimination of the target when located adjacent to the
target (0.98) but not when located relatively far from the
target (2.1 – 4.58), whereas the high-reward distractor
caused interference in both near and relatively far loca-
tions (0.98 and 2.18) [Wang et al., 2014]. According to
Mounts [2000b], the power of surround inhibition is deter-
mined by stimulus intensity, and the strongest inhibition
appears at 1.548 from the attended stimulus. In our
previous study [Wang et al., 2014], the most adjacent
distractor (0.98) may fall outside the inhibitory region,
causing interference in both reward conditions. In this
study, we increased the distance (1.6/2.8/4.08) between
the target and the reward-associated distractor. We pre-
dicted that the low-reward distractor in none of the three
distances could cause interference whereas the high-
reward distractor caused interference only when it was
presented near the target (1.68), not when it was far from
the target (2.8/4.08).

The prefrontal cortex and the lateral intraparietal area,
the primate homolog of human IPS, have been consistently
implicated in reward processing [Leon and Shadlen, 1999;
Platt and Glimcher, 1999]. However, it is possible that the
activity in these areas reflects attention orienting to, rather
than the neural coding of, reward information [Maunsell,
2004]. The current paradigm allowed us to dissociate these
two processes. We reasoned that the comparison between
high- and low-reward distractors in the near distance
reveals the neural basis of reward-based attention and the
comparison between the near and far distances for the
high-reward distractor mainly reveals the neural basis of
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stimulus-driven attentional orienting to the reward-
associated distractor. While the stimulus-driven network
would be commonly involved in the two comparisons, the
areas reflecting the source of reward-based salience would
only be involved in the former comparison.

The anterior insula (AI) is proposed to be a key node
for representing subjective salience, responding to various
salient signals irrespective of the modality and the valence
of the input signal [Uddin, 2015]. We thus hypothesized
that, relative to the low-reward distractor, the high-reward
distractor will acquire higher salience after the learning
phase, and in turn induce stronger activity in AI in the
test phase. Moreover, by using dynamic causal modeling
(DCM), we were able to investigate the interplay between
the reward-based salience network (AI) and the attentional
orienting network.

MATERIALS AND METHODS

Participants

Fourteen right-handed university students participated
in the behavioral experiment (3 females, mean age 23.4
years) and another 19 in the fMRI experiment. Two partici-
pants of the fMRI experiment were excluded from data
analysis due to excessive head movement (>3 mm), leav-
ing 17 participants (4 females, mean age 21.5 years). They
all had normal or corrected-to-normal visual acuity. All
the participants gave informed written consent in accord-
ance with the Declaration of Helsinki. This study was
approved by the Ethics Committee of the Department of
Psychology, Peking University.

Design and Procedures

The two experiments had the same design. Each experi-
ment included a learning phase and a test phase in two
successive days. In both phases, 16 items (each measured
1.28 3 1.28 in visual angle) were presented at the center of
a light gray (gray scale: 204) screen. These items were
located on an imaginary circle (78 radius) around the cen-
tral fixation (a black cross, 0.58 3 0.58), with equal intervals
(1.68) between each two adjacent items.

In the learning phase, the target was a red or blue circle
among the other 15 black circles (Fig. 1A). The target circle
appeared randomly at the seven locations in the lower vis-
ual field. A black line segment was presented in each of
the circles, which was horizontal or vertical in the target
circle and titled 458 to the left or the right in the distractor
circles. Participants were asked to discriminate the orienta-
tion of the line segment in the target circle on each trial by
pressing a response button with their index or middle fin-
ger. One target color was associated with high reward
while the other with low reward, with the assignment
counterbalanced over participants. The association of tar-
get color with monetary reward was established by pre-

senting a feedback frame indicating the points a
participant earned in that trial and the total points accu-
mulated thus far. For a high-reward target, a correct
response was followed by “110” in the subsequent feed-
back frame on 80% of the trials, denoting the receipt of 10
points, and was followed by “11” on the remaining 20%
of the trials, denoting the receipt of 1 point. For a low-
reward target, the percentages were reversed. Incorrect
responses resulted in “0” and omissions were followed by
a word “miss” in the feedback frame. Participants were
informed of the conversion rate of the points (one point
equaled to ¥0.02, ¥100 � US $16) and were told that the
points accumulated during the learning phase would be
proportionally exchanged to the final monetary reward
and added to their basic payment (¥20 for the behavioral
experiment, ¥100 for the fMRI experiment) for taking part
in the experiment.

In the test phase, the target was a black diamond among
the other 15 distractor circles. The target diamond was
always located at the bottom location of the imaginary
circle to facilitate the formation of the inhibition region
[Wang et al., 2014]. Each trial had a critical distractor
whose color was either associated with high reward or
low reward in the learning phase. This critical distractor
was located at one of the three possible locations left or
right to the target location, with 0, 1, or 2 intervening dis-
tractors (1.6/2.8/4.08) between it (the critical distractor)
and the target (Fig. 1B). Therefore, the test phase was a
2 3 3 factorial design: distractor type (high- vs. low-
reward) and colored distractor location (1 vs. 2 vs. 3). We
did not include a no-distractor condition in the current
design. This was to ensure that the initial attention was on
the target, which is necessary for surround inhibition
[Cutzu and Tsotsos, 2003; Wang et al., 2014]. Specifically,
if a no-distractor condition is included, whether a particu-
lar trial has a singleton distractor will be uncertain. It is
thus highly possible that the “abrupt onset” of the distrac-
tor, rather than the target, will attract attention first [Yantis
and Jonides, 1984, 1990], preventing the buildup of the
inhibitory region around the target. For this reason, we fol-
lowed the “high vs. low reward” design of our previous
behavioral study [Wang et al., 2014].

In the behavioral experiment, participants were tested
individually in a soundproof and dimly lighted room.
They were seated in front of a CRT monitor screen with
their head positioned on a chin rest and were required to
fixate the central cross throughout each trial. The eye-to-
monitor distance was fixed at 65 cm. In the fMRI experi-
ment, stimuli were presented through an LCD projector
onto a rear screen located behind the participant’s head,
and the participant viewed the screen via an angled mirror
mounted on the head-coil of the MRI setup.

In both phases, each trial began with the presentation of
the central fixation for a varying duration of 400/500/600
ms. In the learning phase, the task frame was then pre-
sented and remained on the screen for 400 ms. After a
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1000 ms interval of blank screen, the feedback frame was
presented and remained on the screen for 1000 ms. The
duration of the inter-trial interval (ITI) was fixed at 1500
ms for the behavioral experiment and was jittered from
1500 to 2500 ms (1500, 2000, and 2500 ms) for the fMRI
experiment even though this jittering procedure had no
use for our main fMRI data analysis. In the test phase, the
task frame was presented for 600 ms after the fixation.
There was no feedback following participants’ response.
The ITI was fixed 2000 ms for the behavioral experiment
and was jittered from 3000 to 4000 ms (3000, 3250, 3500,
3750, and 4000 ms) for the fMRI experiment. We did
not control the eye movements here because in our previ-
ous study we observed similar results, that is, the
“breakthrough” effect in the high-reward vs. low-reward
condition, irrespective of whether eye fixation was con-
trolled [Wang et al., 2014]. These results suggested that

eye movements could not be the main cause of the
observed “breakthrough” effect.

There were 360 trials for each of the two targets in the
learning phase and 60 trials for each condition in the test
phase. For the behavioral experiment, trials were divided
into 12 blocks of equal length in the learning phase and 6
blocks in the test phase. For the fMRI experiment, trials
were divided into three separate scanning runs of equal
length in the learning phase and 6 runs in the test phase.
Trials of different conditions were equally distributed in
each block (run) and were presented in a pseudo-
randomized order, with the restriction that no more than
three consecutive trials required the same responses. Par-
ticipants were instructed to respond as quickly and accu-
rately as possible to maximize their income. Trials with
response latency longer than 800 ms in both phases were
identified as omissions to encourage performance. Twenty

Figure 1.

The paradigm and behavioral results of the two experiments. A:

In the learning phase, 16 circles were located on an imaginary

circle. The target circle was a unique color (red or blue), which

was presented at one of the seven locations in the lower visual

field (left panel). One of the two target colors was associated

with high reward (1 10) while the other color with low reward

(11). After the button press for judging the orientation of the

line segment in the target circle, a feedback frame was pre-

sented, indicating the points the participant earned in the cur-

rent trial and the total points accumulated from the first trial

(right panel). B: In the test phase, the participant judged the ori-

entation of the line segment in a diamond among the other 15

circles. The target diamond was always presented at the bottom

of the search array (right panel). The color previously associated

with high or low reward appeared as the color singleton distrac-

tor at one of the three locations around the target, with 0, 1,

or 2 intervening distractors between the reward-associated dis-

tractor and the target (left panel). C: Results from the test

phase of the behavioral (left panel) and the fMRI (right panel)

experiments. Mean Reaction Times (ms) are shown as a function

of distractor location for the high-reward and low-reward dis-

tractors. Error bars denote within-subject standard errors

[Cousineau, 2005].
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practice trials in which the monetary feedback was
replaced by response feedback (correct vs. incorrect) were
provided prior to each of the two phases.

For the fMRI experiment, we included a localizer task in
a separate scanning session after the test phase to identify
each participant’s task-relevant visual areas. Seven circles
with line segment inside were presented below the fixation
cross (Fig. 2A). The circles had the same size and were
located at the exact positions as the target and critical dis-
tractor in the test phase. The circles concurrently flickered
with a frequency of 1 Hz in a 10-s block (stimulus-on
block) and lasted for 500 ms each time (500-ms on and
500-ms off).

The whole scanning session included 6 stimulus-on
blocks alternating with 6 stimulus-off blocks during which
only the fixation cross was presented. In each block, the
color of the vertical bar of the fixation cross changed from

black to red or green at a randomly selected time point
and changed back to black after 500 ms. Participants were
asked to discriminate the color of the vertical bar once the
color change was detected.

Data Acquisition and Preprocessing

For each participant, imaging data were obtained in two
successive days. T2*-weighted echo-planar images (EPI)
with blood oxygenation level-dependent (BOLD) contrast
was obtained with a research-dedicated GE MR750 3T
scanner (General Electric, Fairfield, Connecticut). Forty
transversal slices of 3.1 mm thickness that covered the
whole brain were acquired in an interleaved order (repeti-
tion time: 2000 ms, echo time: 30 ms, field of view: 200 3

200 mm2, in-plane resolution: 3.1 3 3.1 mm2, flip angle:
908).

Figure 2.

Stimuli and neural results from the localizer task. A: Seven

circles flickered in the lower visual field. They were located at

the same locations as the target and distractors in the test

phase. The task was to detect a color change of the vertical bar

of the central fixation. B: Clusters activated in the localizer task

(stimulus-on block vs. stimulus-off block). Statistical parametric

map is shown at the threshold of P< 0.05, FWE-corrected at

voxel level. C: Parameters estimates extracted from a peak

voxel in the left and the right extrastriate cortex are shown as

the function of the six experimental conditions of the test

phase. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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In the first day, the scanning consisted of two resting-
state sessions and a task session of the learning phase. The
two separate runs of resting-state data, which contained
200 EPI volumes each, were acquired 3 min before (pre-
learning resting-state data) and 3 min after (post-learning
resting-state data) the learning phase, respectively. Sponta-
neous brain activity recorded in resting-state fMRI has
been demonstrated to be an effective predicator of atten-
tional performances [Carter et al., 2010; Shulman et al.,
2009]. In this study, the resting-state sessions were used to
explore whether the learning-induced changes of sponta-
neous brain activity could predict the attentional effect in
the later test phase. During the resting-state scanning, par-
ticipants were asked to close their eyes and keep still, and
not to think about anything systematically or fall asleep
for 7 min. In the second day, the scanning consisted of a
session of the test phase with the main task and a session
of the localizer task.

Task fMRI data

Data for the main task in the test phase were prepro-
cessed with Statistical Parametric Mapping software SPM8
(Wellcome Trust Department of Cognitive Neurology,
London, UK). For each run, the first five volumes were
discarded to allow for T1 equilibration effects. Preprocess-
ing was done with SPM8 default settings. Images from
each run were slice time corrected and motion corrected.
Different brain tissues (gray matter, white matter, and cer-
ebrospinal signals) were segmented following the standard
procedures implemented in SPM8 and were transformed
into standard MNI space and resampled to 3 3 3 3

3 mm3 isotropic voxel. The data were then smoothed with
a Gaussian kernel of 6 mm full-width half-maximum
(FWHM) to accommodate inter-subject anatomical
variability.

Resting-state fMRI data

Similar preprocessing procedures were carried out for
the resting-state data in the learning phase using SPM8
and Data Processing Assistant for Resting-State fMRI
(DPARSF) [Yan and Zang, 2010]. For each of the two ses-
sions, the first five volumes were discarded to allow for T1
equilibration effects. The remaining images were then slice
time corrected, motion corrected, and spatially normalized
into standard MNI space and resampled to 3 3 3 3

3 mm3 isotropic voxel. After a linear trend of the time
courses was removed, the band-pass filter (0.01–0.1 Hz)
was applied to remove low-frequency drifts and high-
frequency noise. White matter and cerebrospinal signal
were extracted using SPM’s priori masks implemented in
DPARSF. The head motion parameters, mean global sig-
nal, white matter signal, and cerebrospinal fluid signal
were regressed out.

Statistical Analysis of Behavioral Data

For each experimental condition in the test phrase, omis-
sions, incorrect responses, and trials with RTs 6 3 SDs
beyond the mean RT for all the correct trials were first
excluded. Mean RT of the remaining trials (95.1% of all
the trials in the behavioral experiment and 90.0% in the
fMRI experiment) in each condition was then computed.
The error rate in each condition was calculated as the pro-
portion of the number of omissions (including the trials in
which RT was higher than 800 ms) and incorrect trials
against the total number of trials in the condition (Table I).

We used a 5 0.05 as the threshold for statistical signifi-
cance. However, we observed a few effects that fell
between 0.05<P< 0.1. We chose to report these effects
anyway because we believed that they may goad future
studies to offer more convincing evidence. To be sure, we
limited our reliance on these “marginally significant”
effects when making inferences.

Statistical Analysis of Imaging Data

Whole-brain analysis

The whole brain analysis focused on the main task in
the test phase. Data were high pass-filtered with a cutoff
period of 128 s and corrected for serial correlation. We
specified a general linear model (GLM) to construct a mul-
tiple regression design matrix, with each of the six experi-
mental conditions being modeled as separate regressors:
high-reward distractor at location 1 (H1), high-reward dis-
tractor at location 2 (H2), high-reward distractor at loca-
tion 3 (H3), low-reward distractor at location 1 (L1), low-
reward distractor at location 2 (L2), and low-reward dis-
tractor at location 3 (L3). The six event types were time-
locked to the onset of the task frame, and modeled by a
pulse function convolved with a canonical synthetic hemo-
dynamic response function and its time derivatives. To
control for any potential confounding effect caused by but-
ton press, a parametric modulation regressor of the mean-
corrected RT (mean RT in a specific trial minus mean RT
averaged across all trials in an experimental condition)

TABLE I. Mean reaction times (RTs) and error rates

(ER) and within-participant standard errors (in paren-

thesis) for each condition in the two experiments

Reward
Distractor
location

Behavioral
experiment fMRI Experiment

RT (ms) ER (%) RT (ms) ER (%)

High reward 1 494 (3.5) 5.5 (0.9) 513 (1.5) 9.9 (1.2)
2 478 (2.7) 3.8 (0.8) 506 (2.4) 9.2 (0.9)
3 474 (2.2) 3.8 (0.8) 504 (2.3) 10.1 (1.2)

Low reward 1 484 (2.3) 2.9 (0.6) 506 (1.3) 10.7 (0.8)
2 483 (2.7) 4.8 (1.1) 508 (1.9) 7.7 (0.9)
3 480 (1.8) 5.2 (0.8) 505 (1.8) 10.2 (0.8)
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was included for each experimental condition. The six
head movement parameters derived from the realignment
procedure were also included. The 6 first-level individual
contrast images corresponding to the six conditions were
fed to a 2 3 3 within-subject ANOVA at the second group
level by employing a random-effects model (i.e., the flexi-
ble factorial design in SPM8 including an additional factor
modeling the subject means). In the modeling of variance

components, we allowed for violations of sphericity by
modelling nonindependence across parameter estimates
from the same participant and allowed for unequal varian-
ces between conditions and between participants using the
standard implementation in SPM8. We defined two con-
trasts: “H1>L1” and “H1>Mean (H2 1 H3).” The former
contrast reflected the neural correlates of reward-based
attentional capture and the latter contrast revealed the
neural correlates of stimulus-driven attentional capture. To
further investigate the brain-behavior correlation, a
planned t contrast “H1>L1” was computed with the
behavioral interference effect (i.e., RTs at H1 minus RTs at
L1) as covariate.

The AFNI program AlphaSim was used to determine
our significance criterion. The smoothness was estimated
using 6 mm 3dFWHM. Areas of activation were identified
as significant only if they passed the threshold of P< 0.005
family wise (FWE)-corrected at the cluster level, which
required 35 contiguous voxels, each voxel significant at
P< 0.005 uncorrected (unless otherwise stated) [cf., Lieber-
man and Cunningham, 2009].

Region of interest (ROI) analysis

Although reward effects have recently been observed over
the entire visual cortex [Arsenault et al., 2013], models of vis-
ual attention indicates that surround inhibition is formed to
suppress the competing neural representations of the dis-
tracting objects mainly in the extrastriate cortex [Desimone
and Duncan, 1995; Luck et al., 1997]. Evidence from magne-
toencephalography studies also showed that the surround
inhibition emerges in early to intermediate areas of visual
cortex [Boehler et al., 2009; Hopf et al., 2006]. We thus
expected that the surround inhibition in the extrastriate cor-
tex should be alleviated for high-reward distractors as com-
pared with low-reward distractors. We first identified early
visual areas by analyzing the localizer data. Specifically, we
defined the contrast corresponding to the effect of “stimulus-
on” block relative to baseline (i.e., “stimulus-off” block).
Given that the localizer contrast revealed the whole visual
cortex at the abovementioned threshold, we used instead a
more stringent statistical criterion of P< 0.05 FWE-corrected
at voxel level. Areas survived this criterion were mostly
located in the extrastriatal cortex (BA19, Fig. 2B). Then we
specified another GLM for the test phase, which is similar to
the GLM for the whole-brain analysis except that each of the
six conditions was divided into two regressors, depending
on the visual field (left vs. right) in which the distractor was
presented. Parameter estimates corresponding to the six con-
ditions in the right visual field and the left visual field were
respectively extracted from a peak voxel in the left and the
right extrastriatal cortex across all participants (left: x 5 236,
y 5 288, z 5 16; right: x 5 39, y 5 276, z 5 214). To test
whether there was asymmetry of reward effects on the left
and the right visual cortex, a 2 (Hemisphere: left vs. right) 3

2 (Reward: high vs. low) 3 3 (Location: 1, 2 vs. 3) ANOVA
was carried out for these parameter estimates.

TABLE II. Brain areas revealed in the test phase

MNI
coordinates

Cluster
Region Hemisphere BA x y z t value size

“H1>Mean (H2 1 H3)”
IPS L 7 227 267 46 6.01 514
LOC L 37 245 264 211 4.86 92
IFG (Tri.) R 45 48 29 19 4.34 57
MOG L 19 236 285 16 4.11 48
MFG R 6 30 8 49 4.00 91
IFG L 44 251 11 31 3.94 213
IPS R 19 30 261 34 3.69 177
IFG (Oper.) R 44 48 11 22 3.65 48
“H1>L1”
LOC L 37 248 264 211 6.56 225
IPS L 40 236 246 55 5.45 284
MOG L 19 233 282 19 4.50 112
LOC R 20 48 243 226 4.13 52
SMA L 32 29 14 43 4.02 51
PI L 48 236 222 10 4.01 161
IFG L 44 251 11 34 3.98 283
AI R 47 27 23 214 3.75 107
AI L 48 227 20 25 3.64 41
IPS R 7 27 246 43 3.58 58
“H1>Mean (H2 1 H3)” \ “H1>L1”
IPS L 40 239 243 55 4.93 290
LOC L 37 245 264 211 4.86 78
MOG L 19 233 288 16 3.90 39
IFG L 44 251 11 34 3.56 98
“H1>H2” masked by “H1>Mean (H2 1 H3)”
LOC L 19 239 282 28 4.53 97
LOC R 41 48 243 26 4.13 52
SMA L 32 29 14 43 4.02 50
PI L 48 236 222 10 4.01 160
PCG L 6 254 24 43 3.98 174
MOG L 18 227 288 19 3.90 50
AI R 48 27 17 214 3.86 67
AI L 48 227 20 25 3.64 41
“Mean (H2 1 H3)>H1”
PCC L/R 23 0 246 19 4.31 156
Precuneous R 7 3 276 37 4.29 106
“L1>H1”
Precuneous R 23 3 240 28 3.49 52

Notes: AI: anterior insula; BA: Brodmann’s area; IFG: inferior
frontal gyrus, IPS: inferior parietal sulcus; LOC: lateral occipital
cortex; MFG: middle frontal gyrus; MOG: middle occipital gyrus;
Oper.: opercularis; PCC: posterior cingulate cortex; PCG: postcen-
tral gyrus; PI: posterior insula; SMA: supplementary motor area;
Tri.: triangularis.
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Dynamic causal modeling

Different models of functional architecture and effective
connectivity were compared using DCM10 implemented
in SPM8. Here we used bilinear DCM, which consists of
three different sets of parameters [Friston et al., 2003]: (1)
the “intrinsic” connectivity represents the latent connectiv-
ity between brain regions irrespective of experimental con-
ditions; (2) the “modulatory” connectivity represents the
influence of experimental conditions on the intrinsic con-
nectivity; and (3) “input” represents the driving influence
on brain regions by the experimental conditions. We
extracted activation time courses (eigenvariate) from the
left AI, the left inferior frontal gyrus (IFG), the left IPS and
the left lateral occipital cortex (LOC) in each participant
from a 3 mm sphere centered on the group peak coordi-
nates revealed by the contrast “H1>L1” (see “Results”).
The connectivity between IFG/IPS and the visual cortex
(LOC in this study) was constructed based on previous
models of the stimulus-driven attentional network [Vossel
et al., 2012]. The intrinsic connectivity between AI and
IFG/IPS was also specified because of AI’s involvement in
reward-based attention and its correlation with the behav-
ioral interference effect (see “Results”). Given the impor-
tant role of AI in representing stimulus salience [Uddin,
2015], we hypothesized that the reward-based salience is
represented in AI and then projected to the frontoparietal
network (IFG and IPS), which in turn modulates the neu-
ral activity in LOC. Based on this hypothesis, we con-
structed 8 model families characterized by three
independent factors: the presence or absence of the intrin-
sic connectivity from LOC to AI, the direction (i.e., bilat-
eral or unilateral) of intrinsic connectivity between AI and
the frontoparietal network, and the direction (i.e., bilateral
or unilateral) of intrinsic connectivity between the fronto-
parietal network and LOC (Fig. 4A). AI received the sali-
ence input (the reward-based salience, H1 vs. L1) in all the
model families, whereas LOC received the visual input in
the model families in which it had influence on other
areas. Each model family contained nine single models
that share the same driving input and intrinsic connectiv-

ities, but differed in the structure of the modulatory con-
nectivity exerted by reward. Table III summarized the
structure of the modulatory connectivity in the nine mod-
els. To test our hypothesis concerning reward-based atten-
tion, only H1 and L1 were included in the modeling. It
should be noted that for families containing bilateral
intrinsic connectivity, the H1 and L1 conditions were
specified to modulate on both directions.

These models and model families were then compared
using the Bayesian Model Selection (BMS), which uses a
Bayesian framework to compute the “model evidence” of
each model, representing the trade-off between model sim-
plicity and model fitness [Penny et al., 2004]. Here, BMS
was implemented using random-effect analysis (i.e.,
assuming that the model structure may vary across partici-
pants) that is robust to the presence of outliers [Stephan
et al., 2009]. Based on the estimated model evidence for
each model, random effect BMS calculates the exceedance
probability, that is, the probability of each model being
more likely than any other model. When comparing model
families, all models within a family were averaged using
Bayesian Model Averaging, and the exceedance probabil-
ities were calculated for each model family [Penny et al.,
2010]. Model parameters were estimated based on the
averaging of the winning family and were tested with
one-sample t tests.

Figure 3.

Results of the whole brain analysis for the test phase. A: Blue: the

activations revealed by the contrast “H1>Mean (H2 1 H3)”. Red:

the activations revealed by the contrast “H1> L1.” Purple: the

common activated regions of the two networks. Green: the brain

activations revealed by the contrast “H1> L1” exclusively masked

by the contrast “H1>Mean (H2 1 H3)”. Statistical parametric map

was shown at the threshold of P< 0.005 FWE-corrected at cluster

level, P< 0.005 uncorrected at voxel level (H1: high-reward distrac-

tor, location 1; H2: high-reward distractor, location 2; H3: high-

reward distractor, location 3; L1: low-reward distractor, location 1).

B: AI was activated by the contrast “H1> L1” when the RT differ-

ence between H1 and L1 conditions were included as covariates

(middle panel). Parameter estimates were extracted from the two

clusters. Scatter plots (with best-fitting regression lines) illustrates

the difference of the parameter estimates between H1 and L1 con-

ditions as a function of the RT difference (left and right panels). In

the right panel, the correlation was still significant after the outlier

(the bottom left dot) is excluded from the data (R2 5 0.59). Thus,

we keep all the data points in the plot. Note that the bottom left

dot in the right panel was identified as the only outlier because the

activity strength (the value of parameter estimates) of this dot in

the right AI was beyond 23SD of the group mean. No outlier was

found in the left panel.

TABLE III. The structures of the modulatory connectiv-

ity in DCM

Models 1 2 3 4 5 6 7 8 9

AI – IFG 1 1 0 0 0 0 1 1 0
AI – IPS 1 1 0 1 1 0 0 0 0
IFG - LOC 1 0 1 0 0 0 1 0 1
IPS - LOC 1 0 1 1 0 1 0 0 0

Notes: AI: anteriobr insula; IFG: inferior frontal gyrus; IPS: intra-
parietal sulcus; LOC: lateral occipital cortex; 1: presence, 0:
absence.
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Figure 4.

The dynamic causal modeling (DCM) analysis for AI and the

fronto-parietal network. A: The structure of 8 model families

(left hemisphere). These model families differed in terms of the

presence or absence of the intrinsic connectivity from LOC to

AI, the direction of the intrinsic connectivity between AI and

IFG/IPS, the direction of the intrinsic connectivity between IFG/

IPS and LOC, and the input. Each model family contained nine

models, which differed in the specific pathway(s) that modulated

by reward (H1 vs. L1, see Table III). B: The exceedance proba-

bilities of the eight model families (left panel) and the single

models (right panel). The single models from the eight model

families were ordered in consistence with Table III. C: The esti-

mated DCM parameters of the average model of the winning

family (* P< 0.05, ** P< 0.01, # P 5 0.051). [Color figure can be

viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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Resting-state analysis

According to our hypothesis, the salience of the reward-
associated stimulus was increased after learning. However,
given the lack of behavioral differences between high- and
low-reward targets in the learning phase, it was not clear
when the reward-based salience was acquired. To over-
come this deficit, we took advantage of the resting-state
data and examined whether the functional connectivity
(FC) in the post-learning session could predict partici-
pants’ interference effect in the test phase. A recent study
suggested that the VS, a subcortical area that represents
reward value [Sescousse et al., 2010], interacted with the
AI in directing attention to reward-related stimulus [Roth-
kirch et al., 2014]. We hence expected that the behavioral
interference effect could be predicted by FC between VS
and AI. The FC analysis was carried out using the
Resting-State fMRI Data Analysis Toolkit (REST; http://
www.restfmri.net/) [Song et al., 2011]. The coordinates of
the bilateral AI were based on the results of whole-brain
analysis, and the coordinates of the bilateral VS (left:
x 5 212, y 5 9, z 5 29; right: x 5 9, y 5 6, z 5 29) were
based on a previous study of reward processing [Ses-
cousse et al., 2010]. We created spherical seeds centered on
the coordinates of the ROIs with a radius of 6 mm. To pro-
duce a participant-level FC map, we computed the mean
time series across all voxels in these areas and performed
correlation analysis between the AI and the VS for each
participant. These FC maps were then converted to z-FC
maps by conducting Fisher z score transformations. These
analyses were performed for both the pre-learning and the
post-learning data. Next, we performed correlation analy-
sis between the Fisher z scores and participants’ interfer-
ence effect for both the pre-learning and the post-learning
sessions. Partial correlation was also performed after the
Fisher z scores in the pre-learning session had been con-
trolled. We further calculated the change of FC after learn-
ing by subtracting the Fisher z scores in the pre-learning
session from the scores in the post-learning session and
examined correlation between the change of FC and the
behavioral interference effect.

RESULTS

Behavioral Data

Given that neither error rates nor RTs in the learning
phase showed significant differences between experimen-
tal conditions, the following report focuses on RTs and
error rates in the test phase (Table I).

For the behavioral experiment, repeated-measures analy-
sis of variance (ANOVA) on RTs showed a main effect of
location, F (2, 26) 5 11.20, P< 0.001, h2

p 5 0.463, and an
interaction between distractor type and location, F (2,
26) 5 4.63, P< 0.05, h2

p5 0.263, but no main effect of dis-
tractor type, F< 1. Separate ANOVAs on the location effect
were carried out for the low-reward and high-reward dis-

tractors, respectively. For the low-reward distractor, RTs at
the three locations (L1: 484 ms, L2: 483 ms, L3: 480 ms)
did not differ from each other, F< 1. For the high-reward
distractor, there was a significant location effect, F (2,
26) 5 11.74, P< 0.001, h2

p5 0.474. Further pairwise compari-
sons with Bonferroni correction showed that RTs at H1
(494 ms) was longer than RTs at H2 (478 ms) and H3 (474
ms), with no difference between the latter two: H1 vs. H2,
P< 0.05, 95% confidence interval (CI) [3.5, 28.8]; H1 vs.
H3, P< 0.01, 95% CI [6.9, 33.5]; H2 vs. H3, P> 0.1, 95% CI
[26.1, 14.2]. The interaction between distractor type and
location was also examined from the other direction.
Paired t tests were carried out for the reward effects at
each of the three locations. The results showed that RTs at
H1 was longer than RTs at L1, t (13) 5 2.14, P 5 0.052, 95%
CI [20.1, 20.4], whereas RTs at H2 did not differed from
RTs at L2, t (13) 5 1.16, P> 0.1, 95% CI [213.7, 4.2], and
RTs at H3 was shorter than RTs at L3, t (13) 5 2.52,
P< 0.05, 95% CI [211.6, 0.9] (Fig. 1C, left panel). When the
H3 and L3 conditions were excluded, the 2 (Reward: high
vs. low) 3 2 (Location: 1 vs. 2) ANOVA still showed an
interaction between reward type and location, F (1,
13) 5 4.72, P< 0.05, h2

p5 0.266, indicating that the interac-
tion between reward and location was driven at least
partly by the delayed RTs at H1 relative to L1. The
ANOVA on error rates showed only a trend of interaction
between reward type and location, F (2, 26) 5 2.73,
P 5 0.084, h2

p5 0.174. For the low-reward distractor, there
was a marginally significant effect of location, F (2,
26) 5 2.61, P 5 0.092, h2

p5 0.167. Further pairwise compari-
sons with Bonferroni correction showed that the differen-
ces between error rates for the low-reward distractor at
the three locations (L1: 2.9%, L2: 4.8%, L3: 5.2%) did not
differ from each other, all P> 0.1, but there was a linear
increasing trend from L1 to L2 and to L3, F (1, 13) 5 4.76,
P< 0.05, h2

p5 0.268. For the high-reward distractor, there
was no significant location effect (H1: 5.5%, H2: 3.8%, H3:
3.8%), F (2, 26) 5 1.21, P> 0.1. For the reward effect, error
rates at H1 was higher than error rates at L1, t (13) 5 2.71,
P< 0.05, 95% CI [0.6, 5.1], whereas there was no difference
between the error rates at H2 and at L2 and between the
error rates at H3 and at L3, both P> 0.1, 95% CI [23.3,
2.6] and [23.8, 0.7], respectively.

Similar results were obtained in the fMRI experiment.
The ANOVA on RTs showed only an interaction between
distractor type and location, F (2, 32) 5 3.99, P< 0.05, h2

p5

0.200, but no main effect of distractor type, F< 1, or loca-
tion, F (2, 32) 5 2.45, P> 0.1. Separate ANOVAs on the
location effect showed that there was no significant effect
for the low-reward distractor (L1: 506 ms, L2: 508 ms, L3:
505 ms), F (2, 32) 5 1.28, P> 0.1, but an effect for the high-
reward distractor, F (2, 32) 5 3.94, P< 0.05, h2

p5 0.198. Fur-
ther pairwise comparison with Bonferroni correction
showed that RTs at H1 (513 ms) was longer than RTs at
H2 (506 ms), P 5 0.069, 95% CI [20.4, 14.1], and longer
than RTs at H3 (504 ms), P 5 0.068, 95% CI [0.5, 17.0], with
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no difference between H2 and H3, P> 0.1, 95% CI [27.7,
10.5] (Fig. 1C, right panel). For the reward type, there was
only a significant difference between H1 and L1, t
(16) 5 2.89, P< 0.05, 95% CI [1.8, 11.7], but not between H2
and L2 or between H3 and L3, both P> 0.1, 95% CI [29.1,
4.4] and [25.8, 5.4]. ANOVA on error rates did not show
any significant effects, all P> 0.1.

We noticed that the effects (i.e., H1>H2, H1>H3) in
terms of RTs, as well as in terms of neural activity in
the visual cortex (shown in the imaging data below),
were not as strong as in the behavioral experiment,
although qualitatively the patterns in the two experi-
ments were similar. This reduction in the effect size
may be due to scanner noise, vibration and unfamiliar
body gestures in the scanner [cf. Anderson et al., 2014].
We believe that the reduction in RT effect sizes have
not significantly undermined our main arguments, for
these arguments and most of our analyses of neural

data were primarily based on the effects between H1
and L1, which were robust in both the behavioral and
the fMRI experiments.

Imaging Data

Reward-based attentional capture in the

visual cortex

We first examined whether the effect of reward-based
attentional capture in the test phase was manifested in vis-
ual cortex. Parameters estimates of the six experimental
conditions were extracted from the left and the right
extrastriate cortex identified in our localizer task. The 2
(Hemisphere: left vs. right) 3 2 (Reward: high vs. low) 3

3 (Location: 1, 2 vs. 3) ANOVA on the parameter estimates
revealed only a significant interaction between reward and
location, F (2, 32) 5 6.20, P< 0.01, h2

p5 0.279. For the low-

Figure 5.

The DCM analysis for AI and VS. A: The structure of 12 models with different intrinsic connec-

tivities and modulatory connectivities. B: The exceedance probabilities of the 12 models in the

left (left panel) and the right (right panel) hemisphere. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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reward distractor, the ANOVA on the location effect
showed that the neural activity (collapsed across the left
and the right extrastriate cortex) at L1, L2, and L3 did not
differ from each other, F (2, 32) 5 1.99, p> 0.1, but there
was a linear trend, F (1, 16) 5 4.32, P 5 0.054, h2

p5 0.213,
with the neural activity increasing from L1 to L2 and to
L3. For the high-reward distractor, the location effect was
significant, F (2, 32) 5 4.05, P< 0.05, h2

p5 0.202. Bonferroni-
corrected comparisons showed that the neural activity was
higher at H1 than at H3, P< 0.05, 95% CI [0.0, 0.8].
Although the neural activity at H2 did not differ from
neural activity at either H1 or H3, P> 0.1, 95% CI [20.6,
0.1] and [20.2, 0.5], respectively, there was a linear trend
for the three locations, F (1, 16) 5 7.18, P< 0.05, h2

p5 0.310,
with the neural activity decreasing from H1 to H2 and to
H3. For the reward type, the neural activity was higher at
H1 than at L1, t (16) 5 3.84, P< 0.01, 95% CI [0.2, 0.8],
whereas there was no difference between H2 and L2 or
between H3 and L3, both ps> 0.1, 95% CI [20.2, 0.3] and
[20.6, 0.1], respectively (Fig. 2C). Brain signals in early vis-
ual areas suggested that focusing attention on the target
creates a center-surround inhibition in the visual cortex
and reward-associated stimulus can break through this
inhibition.

Identifying neural correlates of reward-based salience

The contrast of “H1>Mean (H2 1 H3)” revealed the
activation of the visual cortex including the left LOC, left
middle occipital gyrus (MOG), and a frontoparietal net-
work including the bilateral IFG, the right middle frontal
gyrus (MFG) and the bilateral IPS (Table II and Fig. 3A).
The reversed contrast, that is, “Mean (H2 1 H3)>H1”,
revealed activations in the posterior cingulate cortex and
the right precuneous, and the contrast “L1>Mean
(L2 1 L3)” did not show any significant activation. This
was consistent with both the behavioral attentional effect
and the activity in the visual cortex. The contrast of
“H1>L1” revealed a similar network: the bilateral LOC,
the left MOG, the bilateral IFG, and the bilateral IPS. A
statistical conjunction analysis [Friston et al., 2005]
between the two contrasts confirmed this overlap by
revealing the activation of LOC, MOG, IFG, and IPS in the
left hemisphere. More importantly, the bilateral AI, the
supplementary motor area (SMA) and the left posterior
insula (PI) was activated only by the contrast of “H1>L1”,
not by the contrast of “H1>Mean (H2 1 H3)”. These
regions could still be observed when the contrast
“H1>L1” was exclusively masked by the contrast
“H1>Mean (H2 1 H3)”. The common region of the fronto-
parietal network thus reflected the neural basis of atten-
tional capture induced by salient stimulus while the
specific activation of AI and SMA reflected the neural
basis of reward-based salience. The reversed contrast
(“L1>H1”) revealed only the activation of the right precu-
neous (Table II). Given that the SMA is responsible for
planning and controlling movement [Nguyen et al., 2014;

Picard and Strick, 2003], and the function of PI has been
differentiated from AI for its involvement in sensory-
motor processing [Chang et al., 2013], these two areas may
only reflect the motor output rather than the source of
reward-based salience. We thus focused on AI, an area has
been demonstrated in representing subjective salience
[Uddin, 2015], in our following analyses.

Brain-behavior correlation

The brain-behavior correlation contrast did not reveal
any significant cluster at the whole-brain level. However,
if we focused on the AI revealed by the above analysis,
we did find significant activation foci whose effect size
(“H1>L1”) positively correlated with the RT difference.
Specifically, we carried out a small-volume-correction
(SVC) within a 10 mm-radius sphere around the peak
coordinates of the bilateral AI identified in the whole-
brain contrast (“H1>L1”). This analysis revealed signifi-
cant activation foci in both the left (x 5 236, y 5 23, z 5 28,
voxel-level P 5 0.072, FWE-corrected, k 5 9) and right AI
(x 5 36, y 5 29, z 5 211, voxel-level P< 0.05, FWE-
corrected, k 5 22; Fig. 3B, middle panel). To illustrate the
correlation pattern, we extracted parameter estimates from
the peak voxels of the bilateral AI identified by the SVC
test and plotted it as a function of the behavioral interfer-
ence effects (RT differences between H1 and L1; Fig. 3B,
left and right panel). SVC tests on the other regions (i.e.,
IFG, IPS, LOC, and SMA) did not reveal any active voxel.

Dynamic casual modeling (DCM)

Figure 4B shows the exceedance probabilities derived
from the Bayesian model comparison. The winning model
family (Family 4) contained recurrent intrinsic connectiv-
ities from AI to IFG/IPS, unidirectional connectivities from
IFG/IPS to the LOC, and recurrent connectivities between
IFG and IPS. The model parameters estimated based on
the average of the wining model family are depicted in
Figure 4C. The H1, but not the L1, condition significantly
enhanced the connectivities from AI to the frontoparietal
network (i.e., IFG and IPS), but not the connectivity from
the frontoparietal network to LOC. These results suggested
that the reward-based salience is first represented in AI
and then projected to the frontoparietal network.

The same DCM analysis was carried out for the four brain
regions (AI, IFG, IPS, and LOC) in the right hemisphere. The
results showed that the winning model family for the right
hemisphere was the same model family as the left hemisphere,
although unfortunately the modulatory connectivity strength
did not reach significance. The lack of statistically significance
here might be due to the lack of power, as the activation
revealed by the contrast “H1>L1” in the right hemisphere
was weaker than in the left hemisphere. Additionally, to
examine whether reward system (e.g., the VS) has influences
on the salience network (e.g., the AI) during the test phase, we
also conducted DCM analyses on the connectivity between VS

r Neural Mechanism of Reward-Based Attention r

r 5245 r



and AI. The VS was defined in the same way as in the resting
state. Nine Models with different intrinsic connectivities and
modulatory connectivities were constructed and compared,
but no model won in the BMS (Fig. 5). This indicated that the
reward system may not be extensively involved in reward-
based attentional capture in the test phase.

Learning-induced changes in spontaneous

brain connectivity

For the pre-learning session, the FC between AI and VS
did not correlate with the behavioral interference effect in
the test phase, left hemisphere: Pearson r 5 20.29, P> 0.1,
right hemisphere: r 5 20.00, P> 0.1 (Fig. 6A). In contrast,
for the postlearning session, there were strong positive
correlations between FC and the behavioral interference
effect, left hemisphere: r 5 0.63, P< 0.01, right hemisphere:
r 5 0.53, P< 0.05 (Fig. 6B). After FC in the pre-learning ses-
sion had been controlled, the partial correlation analysis
still showed positive correlations between the behavioral
interference effect and FC in the post-learning session, left
hemisphere: r 5 0.62, P< 0.05, right hemisphere: r 5 0.64,
P< 0.01. Moreover, there were also significant positive cor-
relations between the change of FC after learning and the
behavioral interference effect, left hemisphere: r 5 0.61,
P< 0.01, right hemisphere: r 5 0.57, P< 0.05 (Fig. 6C).
These results suggested that the reward-based attentional
capture in the test phase could be predicted by the sponta-
neous FC between AI and VS after learning.

DISCUSSION

In this fMRI study, we investigated the neural mecha-
nism of reward-based attention by distinguishing reward-
and attention-related signals. We found that IFG, IPS, and
the visual cortex are commonly activated in reward-based
and stimulus-driven attention, whereas AI was only acti-
vated in reward-based attention. Reward enhanced the
effective connectivity from the salience network (e.g., AI)
to the attention network (e.g., IFG/IPS), but not the con-
nectivity from IFG/IPS to the visual cortex. Moreover, the
reward-based attentional effect could be predicted both by
the activity in AI and by the spontaneous FC between AI
and VS after learning. These results demonstrate the cru-
cial role of AI in instantiating reward-based attention.

Reward Breaks Through Center-Surround

Inhibition in Visual Cortex

The deployment of attention is manifested as facilitated
responses to a target or prolonged disengagement from a
distractor, accompanied by increased neural activity in the
visual cortex [Desimone and Duncan, 1995]. In this study,
relative to the low-reward distractor, the high-reward dis-
tractor near the target delayed the behavioral response to
the target and evoked enhanced neural activity in the vis-

ual cortex. These results add to a large body of work that
highlights the role of reward in attention deployment
[Anderson, 2013; Awh et al., 2012; Chelazzi et al, 2013;
Wang et al., 2013] and its modulation in the visual cortex
[Anderson et al., 2014; Hickey et al., 2010; Serences, 2008].

Previous studies showed that center-surround inhibition
prevents the object located in this region from capturing
attention [Cutzu and Tsotsos, 2003; Mounts, 2000a] and
suppresses the representation of such object in the early
visual cortex [Boehler et al., 2009; Hopf et al., 2006). In a
recent work [Wang et al., 2014], we showed that the low-

Figure 6.

Results of the resting-state fMRI. Scatter plots (with best-fitting

regression lines) illustrates the FC strength between the AI and

the VS in the pre-learning session (A), post-learning session (B),

and the difference in FC strength between the two sessions (C)

as a function of the RT difference between H1 and L1 condi-

tions. Note that for both the behavioral interference effect and

the FC strength, all of the individual observations were with-

in 6 3SD of the group mean.
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reward distractor interfered with the target processing
when it was located adjacent to the target (0.98) but did
not cause interference when it was located further away
from the target (2.1 – 4.58). The low-reward distractor in
far distances failed to cause interference as a result of the
surround inhibition, which emerged around 1.548 from the
target [Mounts, 2000b]. In contrast, the high-reward dis-
tractor caused interference in both near (0.98) and far loca-
tions (2.18). However, this interaction between reward and
location occurred only when attention was initially
focused on the target, for example, when the location of
the target was highly predictable, but disappeared when
there was no initial attention on the target, for example,
when the location of the target was unpredictable [Wang
et al., 2014]. Given that the initial attention on the target is
indispensable for the formation of surround inhibition
[Cutzu and Tsotsos, 2003], the interference effect induced
by the high-reward distractor at 2.18 from the target was
attributed to a “breakthrough” of the surround inhibition
rather than a simple extended interference effect [Wang
et al., 2014].

In a similar vein, here we increased the distance (� 1.68)
between the target and the distractor to ensure that the
reward-associated distractor fell into this inhibitory region.
Results in both the behavioral experiment and the fMRI
experiment showed that low-reward distractors induced com-
parable RTs when they were located in this inhibitory region,
whereas high-reward distractor induced increased RTs at H1
than at H2 and H3. Moreover, when data from the two experi-
ments were collapsed, Bonferroni corrected comparisons
showed that RTs at H1 was longer than RTs in the other condi-
tions (H2, H3, L1, L2, L3), all P< 0.05, whereas RTs in the
other conditions did not differ from each other, all P> 0.1
(except for a marginal significance, P 5 0.08, when comparing
RTs at H3 and L1). These results are consistent with our previ-
ous findings [Wang et al., 2014], indicating that only the high-
reward distractor near the target (H1) captured attention and
interfered with target processing. At the neural level, the activ-
ity in the extrastriate cortex showed a similar pattern, provid-
ing new evidence for the argument that reward could break
through the center-surround inhibition [Wang et al., 2014]. In
a broader sense, this finding is also in line with the idea that
the modulatory effects on visual cortex of top-down attention
and the value of stimuli may engage an overlapping neuronal
selection mechanism [Maunsell, 2004; Stanisor et al., 2013].

In this study, despite that the RTs at different locations
were comparable for the low-reward distractors, neural activ-
ity in the early visual cortex showed a linear increase with
increasing distance from the target, indicating a recovery
from surround inhibition. This recovery effect was also
reported in previous studies on surround inhibition [Boehler
et al., 2009; Hopf et al., 2006]. According to these studies, the
surround inhibition manifests near the attentional focus and
attenuates with the increasing distance from the attentional
focus. For example, Hopf et al. [2006; 2009] showed that only
the stimulus adjacent to the attended target (1.358 in visual

angle) was suppressed in the early visual cortex and the
processing of stimulus in the distant locations (�2.158) was
recovered, even though RTs did not differ between locations.
However, in contrast to a robust recovery in Hopf et al.
[2006; 2009], the recovery of the surround inhibition for the
low distractor in the current study was relatively weak (only
a linear trend from 1.68 to 48). This discrepancy could be
attributed to the difference in stimulus arrays. Distractors
were located in a single quadrant of the visual space in previ-
ous studies [Boehler et al., 2009; Hopf et al., 2006], but were
located in both hemispheres in this study. Given that
between-hemisphere distraction is more easily to inhibit than
within-hemisphere distraction [Alvarez and Cavanagh, 2005;
Wei et al., 2013], the inhibitory region across hemispheres
might be larger than the region within a hemisphere.

It should be noted that the recovery from surround inhi-
bition in the early visual cortex was observed only for the
low-reward but not for high-reward distractor. While neu-
ral representation for the low-reward distractor increased
linearly from near to far locations, neural representation
for the high-reward distractor did not show this pattern
and even decreased from H2 to H3. This asymmetry,
together with the shorter RTs at H3 relative to L3 in the
behavioral experiment, may indicate that another neural
and psychological process was taking effect for the high-
reward distractor, that is, the active suppression of high
versus low salient distractor [Geng, 2014]. The active sup-
pression functions to prevent attentional allocation to task-
irrelevant stimulus, especially when this stimulus is char-
acterized with high salience [Geng, 2014; Sawaki et al.,
2012]. In this study, because the target location was fixed
and a singleton distractor was present in every trial, the
active suppression mechanism was triggered to suppress
the distractor; this suppression could be more powerful
for the distractor with high reward-based salience com-
pared with the distractor with low reward-based salience.
The electrophysiological index of this active suppression
was observed when the reward-associated distractor was
rapidly rejected, demonstrating the active suppression of
the reward-associated distractor [Qi et al., 2013; Sawaki
et al., 2015]. Given that the strength of this active suppres-
sion is determined by the representational distance
between the target and the distractor [Geng, 2014], the dis-
tractor located far from the target (H3, H2) is more effec-
tively suppressed than the distractor near the target (H1).
In this way, although the distractor at H1 “broke through”
the surround inhibition, the distractors at H2 and H3 suf-
fered from active suppression and did not receive
adequate representation in the extrastriate cortex.

AI As the Source of Reward-based Salience in

No-Reward Context

Previous studies did not draw consistent conclusions
regarding the neural basis of reward-based attention. In an
event-related potential study, Hickey et al. [2010] showed
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that the effect of attentional orienting to reward-associated
stimulus correlated with the amplitude of medial frontal
negativity (MFN) that could be localized at the anterior cin-
gulate cortex (ACC). The activity in ACC also correlated
with the attentional orienting effect, leading to the argument
that reward increases salience by the mediation of ACC.
However, given that MFN was locked on the reward feed-
back, it is not clear whether the activity in ACC reflected the
sensitivity to reward feedback [Gehring and Willoughby,
2002; Yu et al., 2011] or the source of reward-based salience.
In this study, no reward was provided during the test phase
and any observed activity cannot be attributed to the neural
processing of reward feedback. Given that stimulus-driven
attention was dissociated from reward-based attention, the
activity in AI cannot be conceived as controlling attentional
orienting, but should be interpreted as representing the sali-
ence of the reward-associated distractor. This notion was
confirmed by the DCM that salience (reward magnitude) of
the distractor exerted a causal influence on the effective con-
nectivity from AI to IFG/IPS.

AI has been identified to be a critical node of the “salience
network”, which detects salient external and interoceptive
events/states [Craig, 2009; Seeley et al., 2007; Uddin, 2015].
Consistent with this proposal, AI responds to both reward-
related events [Lee and Shomstein, 2013; Pessoa and Engel-
mann, 2010] and threatening information [Choi et al., 2012;
Dalton et al., 2005]. The activation of AI was also observed
in “contingent attentional capture,” where a distractor
causes interference when it shares certain features with the
target [Serences et al., 2005]. The common engagement of AI
in such situations suggests that AI contributes to be a neural
site for representing subjective salience acquired in the past
selection history [Awh et al., 2012; Uddin, 2015].

In addition to the causal role of AI in projecting subjec-
tive salience to the attentional orienting network, the
dynamic causal influence of AI on the frontoparietal net-
work was also found in other attentional control tasks. For
example, Chen et al. [2015] showed that right AI exerted
causal influences on a frontal-cingulate-parietal network in
integrating signals from visual and auditory modalities.
Evidence across different tasks that involve cognitive con-
trol demonstrated similar causal interactions from AI to
other nodes in the frontal-cingulate-parietal network, and
the strength of this interaction was modulated by attention
demand [Cai et al., 2015]. These results provide conver-
gent evidence for the two-stage model in which the AI
acts as a hub in cognitive control, first detecting events
requiring greater access to attentional resources and then
triggering the execution of the cognitive control processes
[Cai et al., 2015; Menon and Uddin, 2010].

We do not known much about the salience acquisition
process and how insula and the dopaminergic reward sys-
tem interact during this process. Nonetheless, our findings
concerning the resting-state connectivity may provide some
hints along this line. We found that the reward-based atten-
tional effect could be predicted by the changes of spontane-

ous FC between AI and VS due to learning, suggesting that
the reward-based salience in AI was acquired with the help
of VS during learning. Related evidence was observed in an
fMRI-DCM study [Rothkirch et al., 2014] in which reward
anticipation in AI was modulated by enhanced effective
connectivity from VS. According to the winning model in
that study, VS projected reward signals to AI, and the
strength of reward transmission from VS to AI was predic-
tive of the degree of attention directed to the reward-
associated stimulus. Along with this finding, our results
indicate that AI serves as an interface between the initial
reward processing and the further attentional control.

Our results suggest an important role of the reward sys-
tem, in particular the VS, in acquiring the reward-based sali-
ence in the learning phase, but we did not find its
involvement in the test phase. In previous studies on
reward-based attention, the involvement of the reward sys-
tem was observed within a reward context in which the
reward-associated stimulus predicted actual reward
[Hickey and Peelen, 2015; Krebs et al., 2011; Rothkirch et al.,
2014]. However, little evidence shows that the reward sys-
tem is involved in the situation in which the reward-
associated stimulus no longer predicts any reward [Mac-
Lean and Giebrecht, 2015; Qi et al., 2013; but see Anderson
et al., 2014 for positive evidence]. The conditional interac-
tion between the reward system and the attentional network
in the reward context suggests that the reward system
might only work to prioritize the reward-predictive stimu-
lus within a reward context, but not persist to signal the pre-
viously reward-associated stimulus in a no-reward context.
This is in line with a large body of evidence from reinforce-
ment learning studies showing that the VS is more sensitive
to associative learning processes rather than reward per se
[e.g., Schultz, 2015]. Nevertheless, it is also possible that the
dopaminergic reward system does play a role in reward-
based attentional capture, but it is not completely revealed
by our experimental design and the current data set. Future
studies are needed to investigate whether and how the
reward system contributes to the reward-based attention in
the no-reward context.

Dorsal and Ventral Regions in Reward-Based

Attention

One might argue that the frontoparietal network
reported in this study (IFG and IPS) is not the typical ven-
tral network (IFG and TPJ) for stimulus-driven attention.
However, we believe that the IFG-IPS network observed
here was responsible for the stimulus-driven attention.
First, although IPS is part of the dorsal network, which
controls goal-directed attention [Corbetta and Shulman,
2002], its activation is frequently observed in tasks that
require stimulus-driven attention [Serences and Yantis,
2007; Vossel et al., 2009] and contingent attention [Serences
et al., 2005]. DCM also documented connectivity between
IFG and IPS in stimulus-driven attention, suggesting that
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this attention is controlled by the interaction between the
dorsal and ventral networks [Vossel et al., 2012]. Second,
although TPJ is part of the ventral network, it is not
always activated in studies investigating stimulus-driven
attention. For example, Kincade et al. [2005] found that
TPJ did not exhibit greater response to salient task-
irrelevant color singleton than to other stimuli. The
authors thus claimed that TPJ is involved only in involun-
tary shift to behaviorally relevant stimuli. A related argu-
ment was that a filter determines the input to TPJ and
whether a distractor in visual search could pass through
this filter depends on whether it meets the definition of
the target [Shulman et al., 2003]. It is possible that the
task-irrelevant distractor in this study could not pass
through this filter and thus could not activate TPJ.

One might also argue that the attentional network
revealed through the distance effect [H1 vs. Mean
(H2 1 H3)] was not exclusively responsible for stimulus-
driven attention since the stimuli at the three locations
were all reward-related and reward may have differential
impacts upon the processing of the stimuli at different
locations. Although we could not completely rule out this
possibility, we believe that the frontoparietal network
revealed in the contrast subserved at least the attentional
orienting to the reward-associated distractor. First, this
network accords well with the stimulus-driven network
revealed in previous studies with stimuli presented in a
no-reward context [Vossel et al., 2012]. Second, according
to our DCM, the effective connectivity from this network
to the visual cortex was not mediated by reward, exclud-
ing a role of this network in representing reward informa-
tion. Last, the involvement of AI in the reward-based
effect but not in the distance effect additionally confirmed
the functional dissociation between the frontoparietal net-
work and AI.

CONCLUSION

Our results revealed distinct roles of AI and the
stimulus-driven network in reward-based attention. Asso-
ciating rewarding information to a stimulus increases the
salience of that stimulus and this reward-based salience is
represented in AI, which projects this information onto the
stimulus-driven attentional network and enables the
reward-associated distractor to break through the center-
surround inhibition in the visual cortex.
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